

DEVELOPMENT OF NONDESTRUCTIVE EVALUATION (NDE) METHODS FOR STRUCTURAL AND FUNCTIONAL MATERIALS

J.G. Sun Argonne National Laboratory, Argonne, IL, USA

2017 Crosscutting Research Project Review Pittsburgh, PA March 20-23, 2017

Work supported by U.S. Department of Energy, Office of Fossil Energy, Crosscutting Research Program

Outline

- Objective of this project
- NDE for thermal barrier coatings (TBCs)
- NDE for additive manufactured (AM) samples
- Summary
- Planned FY2017 effort

Objectives of This Project

- Develop and demonstrate advanced NDE methods for structural and functional materials
 - Current development is focused on thermal imaging NDE methods

Recent NDE Developments

- NDE for thermal barrier coatings (TBCs)
 - Evaluation/modeling low-cost IR camera for industrial applications
 - NDE analysis for TBC life prediction
- NDE for additive manufactured (AM) samples
 - Evaluation 3D thermal diffusivity (for AM material isotropy)

TBC Background – Material and Structure

- Thermal barrier coatings (TBCs) are commonly used to insulate high-temperature metallic components in gas turbines
 TBCs may reduce metal surface temperature by >100°C
- TBCs are "prime reliant" material → nondestructive evaluation (NDE) is needed for their condition monitoring and life prediction
 - Need 100% coating surface inspection by imaging NDE

Uncoated and TBC-coated turbine blades

- TBC material: yttria stabilized zirconia (YSZ)
- TBC processing: air plasma spraying (APS) or electron beam–physical vapor deposition (EB-PVD)

TBC Background – NDE Development

- Many NDE technologies were evaluated for TBCs in last few decades → generally not very successful
- Current TBC analysis and quality control still relies on destructive methods

 This research has established Pulsed Thermal Imaging – Multilayer Analysis (PTI-MLA) as a promising NDE method for entire TBC lifetime evaluation

Pulsed Thermal Imaging – Multilayer Analysis (PTI-MLA)

- PTI-MLA consists of a pulsed thermal imaging (PTI) experimental system and a multilayer analysis (MLA) data-processing code
- PTI-MLA images two coating properties over entire coating surface
 - thermal conductivity and heat capacity (or thickness)

PTI experimental setup

Thermal conductivity image

0.5 W/m-K

1.4 W/m-K

PTI-MLA: Principle for Coating Analysis

PTI system setup

 α – thermal diffusivity

Temperature profile *T*(*t*) at each pixel

MLA analysis

Log slope profile d(lnT)/d(lnt)

Slope $d(\ln T)/d(\ln t)$ peak time and magnitude determine two coating parameters (out of *L*, *e*, and α)

Summary of PTI-MLA Capabilities

- PTI-MLA may evaluate TBC material in its entire life cycle
 - Inspection of fabricated TBC components (for quality control)
 - TBC health monitoring and life prediction during service
 - Detection of TBC flaws/damages (for research and application)
- PTI-MLA is used in industrial applications
 - Inspection of engine components (collaborated with Dr. A. Kulkarni of Siemens Corp.)
 - Recent developments to address all remaining issues

PTI-MLA for Industrial Applications

- Two factors affect PTI-MLA NDE for industrial applications:
 - TBC translucency requires surface treatment (usually graphite paint)
 - High-cost and large size of high-end IR cameras
- Solution: use low-cost LWIR camera (bolometer)
 - TBC is naturally opaque at LWIR (7-13µm) (no paint required)
 - Bolometers are small and much cheaper (~10% of cooled IR camera)

State-of-the-art IR camera: SC4000 (Cooled, MWIR, 320x256, high speed)

(Bolometer) Low-cost IR camera: A35 (RT, LWIR, 320x256, 60Hz)

Recent NDE Developments

- NDE for thermal barrier coatings (TBCs)
 - Evaluation/modeling low-cost IR camera for industrial applications
 - NDE analysis for TBC life prediction
- NDE for additive manufactured (AM) samples
 - Evaluation 3D thermal diffusivity (for AM material isotropy)

Evaluation of a FLIR A35 IR camera

- Various TBC samples were tested using SC4000 and A35
- A35 results were compared with SC4000 results (as "exact")
 Compared parameters: TBC thickness and thermal conductivity

Measured conductivity images for 0.36mm TBC

Comparison for TBC thickness are better (+16% and -2%)

TBC measurement error by A35 camera

PTI-MLA Development for Bolometers

- Modeling flash heat absorption inside translucent TBCs
- Modeling bolometer response time

Modeling TBC Translucency for LWIR Camera

Painted TBC Unpainted TBC From flash lamp To IR (<2.5µm) camera TYSZ Metallic substrate

- A model was developed for flash heat absorption inside unpainted TBC
- No model is needed for LWIR emission (surface emission only)

Optical Model for TBC Heat Absorption

Flash heating as a function of coating depth q(z):

- This optical model was implemented in MLA code
 - $\alpha = 7 \text{ mm}^{-1}$ was found to be appropriate for TBC button samples
 - α can be different for other TBCs

Modeling Bolometer Response Time

- In bolometer, pixel temperature change from absorbed incident thermal energy is used to sense radiation intensity
- This process is modeled by:

$$P(t) = G\Delta T + H \frac{d\Delta T}{dt}$$

P(t) = incident power, G = thermal conductance of thermal link H = pixel heat capacity ΔT = relative pixel temperature (bolometer reading)

IR camera reading to abrupt incident radiation change

• When P(t) changes abruptly from 0 to a constant P at t=0, ΔT follows:

 $\Delta T = \frac{P}{G} \left(1 - e^{-\frac{G}{H}t} \right) \qquad \qquad \text{H/G = bolometer response time}$

- Response time for A35 is 12ms (← reason for poor NDE results for thin TBCs)
- Response time was implemented in MLA code

TBC measurement error by A35 camera - with heat absorption and response time models

Typical Measured TBC Thickness on Blade

- Error for measured TBC conductivity is similar (+7.7% and +7.4%)
 - Note: errors of <10% are generally considered acceptable
- Errors in A35 results are mostly due to noise → higher flash heating will reduce them! (especially for unpainted and thicker TBCs)

Recent NDE Developments

NDE for thermal barrier coatings (TBCs)

- Evaluation/modeling low-cost IR camera for industrial applications
- NDE analysis for TBC life prediction
- NDE for additive manufactured (AM) samples
 - Evaluation 3D thermal diffusivity (for AM material isotropy)

Thermal Imaging NDE for TBC Life Prediction

- TBC damage and life: TBC delamination/spallation from substrate
- NDE may examine detailed damage initiation and development
 - Collaborated with Prof. Sampath's group in Stony Brook University

Confirmation for cracks/delaminations in PTI-MLA data

PTI-MLA data

Thermal tomography depth-slice data

Cracks/delaminations at interface in all images - correlated well

NDE for TBC Life Prediction

- NDE data may detect crack initiation and propagation
 - crack initiation and size increase with time (thru image analysis)
 - crack gap expansion with time (thru conductivity value)

Recent NDE Developments

NDE for thermal barrier coatings (TBCs)

- Evaluation/modeling low-cost IR camera for industrial applications
- NDE analysis for TBC life prediction
- NDE for additive manufactured (AM) samples
 - Evaluation 3D thermal diffusivity (for AM material isotropy)

NDE for Additive Manufacturing (AM)

- AM is an emerging technology expected to be widely adopted
- Selective laser melting (SLM) has been used to make engine parts
- NDE will be an issue in future AM routine production
 - No NDE has been established for:
 - on-line monitoring
 - quality inspection
- We examined isotropy of AM parts
 - by measuring thermal diffusivity in all three directions from same AM sample
- Collaborated with Dr. J. Zhang of Indiana University – Purdue University Indianapolis

Thru-Thickness Thermal Diffusivity Measurement

Test system setup

Thru-thickness diffusivity α_z is measured by fitting data with:

$$T_{0}(z = L, t) = \frac{Q}{\rho c L} \left[1 + 2 \sum_{n=1}^{\infty} (-1)^{n} \exp\left(-\frac{n^{2} \pi^{2} \alpha_{z} t}{L^{2}}\right) \right]$$

 α_z measurement accuracy is typically within 2%

Lateral Thermal Diffusivity Measurement

Test system setup

Heat transfer field observed by IR camera

Lateral diffusivity α_x is measured at each y level from:

$$T(x, z = L, t)$$

$$= \frac{a}{XL} \left[1 + 2 \sum_{m=0}^{\infty} \frac{X}{m\pi a} \sin \frac{m\pi a}{X} \cos \frac{m\pi x}{X} \exp\left(-\frac{m^2 \pi^2 \alpha_x t}{X^2}\right) \right] \left[1 + 2 \sum_{m=0}^{\infty} (-1)^n \exp\left(-\frac{m^2 \pi^2 \alpha_z t}{X^2}\right) \right]$$

Measured α_x was validated to be within 3% of α_z for an isotropic steel sample

Thru-Thickness Measurement

Typical measured Typical fitting at a pixel thru-thickness diffusivity image 10 T (°C) 8 6 4 Experiment 2 Prediction 0 -2 -0.03 0.03 0.06 0.09 0.12 0.15 0 4.5 mm²/s 1.5 t (s)

Measured mean $a_z = 3.97 \pm 0.023$ mm²/s

Lateral Measurement along Build Plane

Typical measured data

Measured thermal diffusivities:Thru-thickness3.97±0.023Build plane direction3.97Build direction4.00

→ AM sample is isotropic!

Summary

- Thermal imaging NDE method was developed for TBCs
 - May evaluate entire TBC life cycle
- Low-cost NDE system was developed for industrial applications
- Thermal imaging NDE may determine AM material isotropy

Planned FY2017 Efforts

- Thermal imaging NDE method for TBCs:
 - Continue TBC life prediction analysis
 - Find simple approach to determine TBC translucency
 - Study substrate curvature on TBC property prediction
- Thermal imaging NDE for AM material quality
- Tech transfer

